高中 数学
小学
初中
高中
语文
数学
英语
道德与法治
科学
音乐
美术
体育
信息技术
心理健康
语文
数学
英语
物理
化学
生物
道德与法治
历史
地理
科学
历史与社会
语文
数学
英语
物理
化学
生物
政治
历史
地理
搜索
上传资料
赚现金
首页
>
试卷
>
高中
>
数学
>
高三上册
>
开学考试
 >
2019-2020学年北京市某校高三(上)开学数学试卷(9月份)【附答案】
精
2019-2020学年北京市某校高三(上)开学数学试卷(9月份)【附答案】
ID:64298
2021-11-24
1
5.00元
7页
47.35 KB
立即下载
已阅读7 页,剩余0页需下载查看
侵权申诉
举报
下载需要
5.00元
免费下载这份资料?
立即下载
2019-2020学年北京市某校高三(上)开学数学试卷(9月份)一、选择题:(共8小题;共40分))1.设集合M={x|x2=x},N={x|lgx≤0},则M∪N=( )A.[0, 1]B.(0, 1]C.[0, 1)D.(-∞, 1]2.设f(x)是定义在R上的奇函数,且当x≥0时,f(x)单调递减,若x1+x2>0,则f(x1)+f(x2)的值()A.恒为负值B.恒等于零C.恒为正值D.无法确定正负3.函数f(x)的导函数f'(x)的图象如图所示,则()A.12为f(x)的极大值点B.-2为f(x)的极大值点C.2为f(x)的极大值D.45为f(x)的极小值点4.α是第四象限角,cosα=1213,则sinα=()A.513B.-513C.512D.-5125.设{an}是等差数列,下列结论中正确的是()A.若a1+a2>0,则a2+a3>0B.若a1+a2<0,则a2+a3<0C.若0
a1a3D.若a1<0,则(a2-a1)(a2-a3)<06.已知{an}中,an=n2+λn,且{an}是递增数列,则实数λ的取值范围是()A.(-2, +∞)B.[-2, +∞)C.(-3, +∞)D.[-3, +∞)7.如图,在平面四边形ABCD中,AB⊥BC,AD⊥CD,∠BAD=120∘,AB=AD=1.若点E为边CD上的动点,则AE→⋅BE→的最小值为( )A.2116B.32C.2516D.3试卷第7页,总7页, 8.设函数f(x)=ex(2x-1)-ax+a,其中a<1,若存在唯一的整数x0使得f(x0)<0,则a的取值范围是( )A.[-32e,1)B.[-32e,34)C.[32e,34)D.[32e,1)二、填空题(共6小题;共30分))9.已知loga2=m,loga3=n,求a2m+n=________.10.已知a→=(1,t),b→=(t,4),若a→//b→,则t=________.11.在等比数列{an}中,a1=12,a4=-4,则公比q=________;|a1|+|a2|+...+|an|=________.12.设函数f(x)=cos(ωx-π6)(ω>0),若f(x)≤f(π4)对任意的实数x都成立,则ω的最小值为________.13.定义在R上的函数f(x)=2ax+b,其中实数a,b∈(0, +∞).若对任意的x∈[-12,12],不等式|f(x)|≤2恒成立,写出满足条件的一组(a, b)的值________.14.甲、乙、丙三人一起进行羽毛球训练,每局两人比赛,另一人休息,三人约定每一局的输者下一局休息.训练结束时统计结果如下,甲共休息了2局,乙共打了8局,丙共打了5局,则这次训练的总局数为________;其中第9局比赛的两人是________三、解答题(共6小题;共80分))15.已知等差数列{an}满足a1=1,a5=a2+6.(1)求数列{an}的通项公式;(2)若{an}的前n项和为Sn,求数列{Snn}与数列{an}的前100项中的所有相同项的和.16.已知函数f(x)=3sinxcosx+cos2x.(1)写出函数f(x)的最小正周期和单调增区间;(2)若函数f(x)的图象关于直线x=x0对称,且0
2恒成立,求实数a的取值范围.19.已知f(x)=(ax2+ax+x+a)e-x(a≤0).(1)讨论y=f(x)的单调性;(2)当a=0时,若f(x1)=f(x2) (x1≠x2),求证x1+x2>2.20.已知数列{an}满足若a1>0,an+1=2an,0
1 .(1)若a6=43,求a4的值;试卷第7页,总7页, (2)是否存在n∈N*,使得若an+an+1=an+2成立?若存在,求出n的值;若不存在,说明理由;(3)求证:若a1∈Q,则存在k∈N*,ak=1.试卷第7页,总7页, 参考答案与试题解析2019-2020学年北京市某校高三(上)开学数学试卷(9月份)一、选择题:(共8小题;共40分)1.A2.A3.A4.B5.C6.C7.A8.D二、填空题(共6小题;共30分)9.1210.t=-2或t=211.-2,2n-1-1212.2313.(1, 1)14.11,甲和乙三、解答题(共6小题;共80分)15.设公差为d的等差数列{an}满足a1=1,a5=a2+6.所以a1+4d=a1+d+6,解得d=2.所以an=1+2(n-1)=2n-1.数列{an}的前n项和为Sn,Sn=1+3+5+...+(2n-1)=n(2n-1)2=n2,所以Snn=n2n=n,所以数列{Snn}与数列{an}的前100项中的所有相同的项为:1,3,5,7,…,99.故T=1+3+⋯+99=50(99+1)2=2500.16.f(x)=3sinxcosx+cos2x=32sin2x+12cos2x+12=sin(2x+π6)+12,∴T=2π2=π.由2kπ-π2≤2x+π6≤2kπ+π2(k∈Z),得kπ-π3≤x≤kπ+π6(k∈Z).∴y的单调递增区间为[kπ-π3, kπ+π6](k∈Z).试卷第7页,总7页, ∵f(x)的图象关于直线x=x0对称,∴2x0+π6=kπ+π2,x0=kπ2+π6(k∈Z).∵0
2恒成立,即[h(x1)-2x1]-[h(x2)-2x2]x1-x2>0,令m(x)=h(x)-2x,则m(x)在(0, +∞)递增,故m'(x)=h'(x)-2=x+ax-2≥0恒成立,即a≥x(2-x)恒成立,因为x(2-x)=-(x-1)2+1≤1,所以a≥1,即a的取值范围是[1, +∞).19.由已知得:x∈R,f'(x)=-(ax+1)(x-1)ex,若a=0,当x<1时,f'(x)>0,当x>1时,f'(x)<0,∴f(x)在(-∞, 1)递增,在(1, +∞)递减,若-1
1,∴f(x)在(-∞, 1)与(-1a, +∞)试卷第7页,总7页, 递增,在(1, -1a)递减,若a=-1,f'(x)≤0,∴f(x)在R递减,若a<-1,时,则-1a<1,∴f(x)在(-∞, -1a)与(1, +∞)递增,在(-1a, 1)递减,综上:若a=0,f(x)在(-∞, 1)递增,在(1, +∞)递减,-1
2,只需证明 x1>2-x2,由f(x)在(-∞, 1)递增,即证f(x2)>f(2-x2),即证2-x2e2-x2
(2-x2)e2x2-2,令g(t)=t-(2-t)e2t-2(t>1),g'(t)=1+(2t-3)e2t-2,g″(t)=(4t-4)e2t-2>0,∴g'(t)在(1, +∞)递增,g'(t)>g'(1)=0,∴g(t)在(1, +∞)递增,g(t)>g(2)=0,∴g(t)在(1, +∞)上恒大于0,即x2>(2-x2)e2x2-2,即x1+x2>2.20.∵a6=43,∴2a5=43,解得:a5=23.∴2a4=23或1-1a4=23,解得a4=13或3.假设存在n∈N*,使得若an+an+1=an+2.①若an∈(0, 12],则an+1=2an,an+2=4an,于是an+2an=4an,解得an=0,舍去.②若an∈(12, 1],则an+1=2an,an+2=1-12an,于是an+2an=1-12an,无解,舍去.③若an∈(1, +∞),则an+1=1-1an,an+2=2(1-1an),于是an+(1-1an)=2(1-1an),无解,舍去.综上可得:假设不成立,即不存在n∈N*,使得若an+an+1=an+2.试卷第7页,总7页, 证明:①若a1=1,则a2=2,a3=1-12=12,a4=1,……,可得存在n=3k-2,使得a3k-2=1,k∈N*.②由①可得:a1=2,12时,都存在k∈N*,ak=1.③若a1∈Q,a1≠1,2,12时.若a1>1,由an+1=1-1an,可以转化为0
3,分母总可以转化为3.例如:a1=15,a2=25,a3=45,a4=85,a5=38,a6=34,a7=32,a8=13,不妨设a1=13,则a2=23,a3=43,a4=14,a5=12,a6=1.综上可得:存在k∈N*,ak=1.试卷第7页,总7页
相关资料
河南省2023届高三数学(文)上学期第一次摸底考试
河南省2023届高三数学(理)上学期第一次摸底考试
浙江省2022年1月普通高中学业水平考试仿真模拟数学试题A(附解析)
江西省宜春市上高二中2021-2022学年高一数学上学期第三次月考试题(附答案)
黑龙江省哈尔滨市第一中学2022届高三数学(理)上学期期末考试试题(附答案)
广东省2022届高三数学11月联考试卷(附答案)
同类资料
更多
2019-2020学年北京市某校高三(上)开学数学试卷(9月份)【附答案】
免费下载这份资料?
立即下载
充值下载
直接下载
×
下载需要:
20
学币
账户余额:
0
学币
...
下载文档
下载文档需支付
5.00
元
账户剩余:0
全站文档免费下载
200M极速下载
一对一专属客服
专业律师审核
请使用微信或支付宝扫码支付
需支付¥
剩余支付时间
我已支付
支付未跳转?点击查询支付结果
支付即表示您已阅读并同意《网站充值服务协议》
举报
×
举报原因
请选择举报原因
涉及党政历史
歪曲党史、新中国史、改革开放史、社会主义发展史
文档内容质量低下无意义
内容中含有违法信息如(涉恐,色情,低俗等)
联系方式
详细说明
提交