§3.4 指数与指数函数基础篇【基础集训】考点 指数与指数函数1.设a>0,将表示成分数指数幂的形式,其结果是( )A. B. C. D.答案 C2.函数y=的值域为( )A. B. C. D.(0,2]答案 D3.设函数f(x)=x2-a与g(x)=ax(a>1且a≠2)在区间(0,+∞)上具有不同的单调性,则M=(a-1)0.2与N=的大小关系是( )A.M=N B.M≤N C.MN答案 D4.若函数f(x)=(a2-3)·ax为指数函数,则a= . 答案 25.若函数y=(a2-1)x在(-∞,+∞)上为减函数,则实数a的取值范围是 . 答案 (-,-1)∪(1,)
[教师专用题组]【基础集训】考点 指数与指数函数1.(2019黑龙江牡丹江一模,8)设函数f(x)=+a,若f(x)为奇函数,则不等式f(x)>-的解集为( )A.(0,ln2) B.(-∞,ln2)C.(-∞,ln3) D.(0,ln3)答案 C 函数f(x)=+a的定义域为R,因为f(x)为奇函数,所以有f(0)=+a=0,解得a=-,则f(x)=-.由y=ex+1为增函数,得f(x)=-在R上为减函数,且f(ln3)=-=-,则f(x)>-⇒f(x)>f(ln3)⇒x-⇒f(x)>f(ln3)⇒x0对一切x∈R恒成立,则必须有(3-2a)2-4a2<0,解得a>,故实数a的取值范围为.3.(2018泰州中学期中,9)已知函数f(x)=设a>b≥0,若f(a)=f(b),则b·f(a)的取值范围是 . 答案 解析 作出函数f(x)=的图象如图,因为函数f(x)在[0,1)和[1,+∞)上都是单调递增函数,所以若满足a>b≥0,f(a)=f(b),则必有b∈[0,1),a∈[1,+∞).由图可知,使f(a)=f(b)成立的b的取值范围为b∈,故f(a)∈.所以b·f(a)∈.4.(2017江苏南通、徐州联考,16)已知函数f(x)=3x+λ·3-x(λ∈R).(1)当λ=1时,试判断函数f(x)的奇偶性,并证明你的结论;(2)若不等式f(x)≤6在x∈[0,2]上恒成立,求实数λ的取值范围.解析 (1)函数f(x)为偶函数.证明:函数f(x)的定义域为R.
当λ=1时,f(x)=3x+3-x,f(-x)=3-x+3x=f(x),所以函数f(x)为偶函数.(2)由f(x)≤6得3x+λ·3-x≤6,即3x+≤6,令t=3x(t∈[1,9]),则原不等式等价于t+≤6在t∈[1,9]上恒成立,即λ≤-t2+6t在t∈[1,9]上恒成立,令g(t)=-t2+6t,t∈[1,9],易知当t=9时,g(t)min=g(9)=-27,所以λ≤-27.综合篇【综合集训】考法一 指数式的大小比较1.(2020湖南炎陵一中仿真考试(文))已知a=log23,b=,c=log47,则( )A.bb,则( )A.ln(a-b)>0 B.3a<3bC.a3-b3>0 D.|a|>|b|答案 C3.(2020福建泉州线上测试)已知a=,b=(e2,c=logπe,e为自然对数的底数,则a,b,c的大小关系为 .
答案 a>b>c考法二 指数(型)函数的图象和性质4.(2020广东揭阳三中第一次月考,6)函数f(x)=的单调递减区间为( )A.(-∞,+∞) B.[-3,3] C.(-∞,3] D.[3,+∞)答案 D5.(2019山东潍坊模拟,7)已知函数f(x)=x-4+,x∈(0,4),当x=a时,f(x)取得最小值b,则函数g(x)=a|x+b|的图象为( )答案 A[教师专用题组]【综合集训】考法一 指数式的大小比较1.(2017浙江高考模拟训练冲刺卷一,4)已知函数f(x)是奇函数,当x>0时,f(x)=ax(a>0且a≠1),且f(lo4)=-3,则a的值为( )A. B.3 C.9 D.
答案 A 由f(lo4)=-3,得f(-2)=-3,又f(x)是奇函数,则有f(2)=3,即a2=3,又a>0,故a=.2.已知定义在R上的函数f(x)=2|x|,记a=f(log0.52.2),b=f(log20.5),c=f(0.5),则a,b,c的大小关系为( )A.a0时,3x>2x>1,结合函数f(x)在[1,+∞)上单调递增,知f(3x)>f(2x),即f(bx)f(2x),即f(bx)f(c)>f(b),则下列结论中,一定成立的是( )A.a<0,b<0,c<0 B.a<0,b≥0,c>0C.2-a<2c D.2a+2c<2答案 D 作出函数f(x)=|2x-1|的图象(如图中实线所示),由af(c)>f(b),结合图象知f(a)<1,a<0,f(c)<1,c>0,∴0<2a<1,1<2c<2,∴f(a)=|2a-1|=1-2a,f(c)=|2c-1|=2c-1.又f(a)>f(c),即1-2a>2c-1,∴2a+2c<2,故选D.3.(2017浙江温州十校期末联考,7)设函数f(x)=若关于x的方程f2(x)-af(x)=0恰有三个不同的实数根,则实数a的取值范围是( )A.[0,+∞) B.(0,+∞)C.(1,+∞) D.[1,+∞)答案 D 作出函数y=f(x)的图象,如图.
由f2(x)-af(x)=0,得f(x)=0或f(x)=a.显然f(x)=0有一个实数根-1,因此只需f(x)=a有两个不同于-1的实根,利用图象可得实数a的取值范围是[1,+∞).5.已知函数f(x)=2|2x-m|(m为常数),若f(x)在区间[2,+∞)上是增函数,则实数m的取值范围是 . 答案 (-∞,4]解析 令t=|2x-m|,则t=|2x-m|在区间上单调递增,在区间上单调递减,而y=2t为R上的增函数,所以要使函数f(x)=2|2x-m|在[2,+∞)上单调递增,则有≤2,即m≤4,所以m的取值范围是(-∞,4].6.若关于x的方程22x-2xa+a+1=0有两个不同的正实根,则实数a的取值范围为 . 答案 (2+2,+∞)解析 设t=2x,则原方程可变为t2-at+a+1=0①,因为原方程有两个不同的正实根,所以方程①有两个大于1的实根.设方程①的两个大于1的实根为t1,t2,则解得a>2+2.