搜索
上传资料
赚现金
首页
>
高考
>
历年真题
>
数学
 >
2004年北京市高考数学试卷(文科)
精
2004年北京市高考数学试卷(文科)
ID:44757
2021-10-19
1
6.00元
6页
45.41 KB
立即下载
已阅读6 页,剩余0页需下载查看
侵权申诉
举报
下载需要
6.00元
免费下载这份资料?
立即下载
2004年北京市高考数学试卷(文科)一、选择题(共8小题,每小题5分,满分40分))1.已知全集U=R,M={x|-2≤x≤2},N={x|x<1},那么M∩N=()A.{x|x<1}B.{x|-2
acB.c(b-a)>0C.cb2
150n-Ln-1;(3)对任何满足条件T的有限个正数,证明:N≤11.试卷第5页,总6页 参考答案与试题解析2004年北京市高考数学试卷(文科)一、选择题(共8小题,每小题5分,满分40分)1.D2.C3.A4.C5.B6.D7.D8.B二、填空题(共6小题,每小题5分,满分30分)9.π10.0.811.(0, -1),[1-2,1+2]12.43,192π13.大,-314.3,当n为偶数时,Sn=52n;当n为奇数时,Sn=52n-12三、解答题(共6小题,满分80分)15.解:(1)∵sinA+cosA=2sin(A+45∘)=22,∴sin(A+45∘)=12.又0∘
48011时,(*)式变形为7-300v+11-480v≤2解得48011
rn由此可得r1+r2++rn-1>150n-L因为(n-1)rn-1≥r1+r2++rn-1,所以rn-1>150n-Ln-1(3)用反证法证明结论,假设N>11,即第11组形成后,还有数没分完,由(1)和(2)可知,余下的每个数都大于第11组的余差r11,且r11≥r10故余下的每个数>r11≥r10>150×11-127510=37.5(*)因为第11组数中至少含有3个数,所以第11组数之和大于37.5×3=112.5此时第11组的余差r11=150-第11组数之和<150-112.5=37.5这与(*)式中r11>37.5矛盾,所以N≤11.试卷第5页,总6页
相关资料
2020浙江省高考语文试题(解析版)
2020浙江省高考语文试题(原卷版)
2021年浙江省高考语文试卷及答案
2022年高考浙江卷语文真题(解析版)
2022年高考浙江卷语文真题(原卷版)
2019-2020年高考试题——语文(江苏卷)解析版
同类资料
更多
2004年北京市高考数学试卷(文科)
免费下载这份资料?
立即下载
充值下载
直接下载
×
下载需要:
20
学币
账户余额:
0
学币
...
下载文档
下载文档需支付
6.00
元
账户剩余:0
全站文档免费下载
200M极速下载
一对一专属客服
专业律师审核
请使用微信或支付宝扫码支付
需支付¥
剩余支付时间
我已支付
支付未跳转?点击查询支付结果
支付即表示您已阅读并同意《网站充值服务协议》
举报
×
举报原因
请选择举报原因
涉及党政历史
歪曲党史、新中国史、改革开放史、社会主义发展史
文档内容质量低下无意义
内容中含有违法信息如(涉恐,色情,低俗等)
联系方式
详细说明
提交